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Abstract

We prove that for m € N, m big enough, the number of irreducble components
of the schemes of m—jets centered at a point which is a double point singularity is
independent of m and is equal to the number of exceptional curves on the minimal
resolution of the singularity. We also relate some irreducible components of the jet
schemes of an Eg singularity to its "minimal" embedded resolutions of singularities.

1 Introduction

In this note, we are interested in schemes of jets centered at a rational double point
singularity. While we have that the global jet schemes of surfaces having such a singularity
is irreducible [Mu], we prove that for m € N, m big enough, the number N(m) of irreducble
components of the schemes of m—jets centered at the singular point is independent of m.
Note that this is not the case for instance for plane curves [Mol]. This may not be the case
also when we have rational singularities which are not locally complete intersection [Mo2].
Moreover, we find that N(m) is equal to the number of exceptional curves on the minimal
resolution of the singularity. This reminds of the Nash map, which defines a correspondence
between the irreducible components of the space of arcs centered at the singularity and
the exceptional curves on the minimal resolution of the singularity. But in general, there is
no direct relation between the irreducbile components of jet schemes and those of the arc
space. For instance, the function N(m), number of irreducible components of the schemes
of m—jets centered in the singular point of a plane curve, goes to infinity when m goes to
infinity [Mol], while the space of arcs centered at the singular point is irreducible. Note
that the Nash map is bijective for rational double point singularities [P1],|PS],[Pe],|Le],
for surfaces with rational singularities [Rel|,|[Re2] and in general for surface singularities
[deBPe].
We will also give a special treatment to the jet schemes of the Fg singularity, by defining
a bijective correspndence between some irreducible components of some jet schemes and
the divisors appearing on the embedded resolutions of singularities which are minimal in
the sense of [GL]. This can be thought as an embedded Nash correspondence.

The structure of the paper is as follows: the second section contains preliminaries on
jet schemes. In the third section, we give and prove the main results. In the last section,
we ask some questions about the Arc-Hilbert-Poincaré series [BMS1|,[BMS2| for rational
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double point singularities, and about jet schemes of locally complete intersection rational
singularities.

I would like to thank the organizers of the second conference on valuation theory, for
inviting me to give a course in this conference. I would like also to thank Helena Cobo,
Monique Lejeune-Jalabert and Bernard Teissier for several discussions. I am grateful to
Camille plénat for sending me the manuscript [P2]| which made me interested in rational
double point singularities and for several discussions about this paper.

2 Preliminaries on jet schemes

Let k£ be an algebraically closed field of arbitrary characteristic. Let X be a k-algebraic
variety and let m € N. The functor F;, : K — Schemes — Sets which to an affine scheme
defined by a k—algebra A associates

Fn(Spec(A)) = Homy(SpecAlt]/ (™), X)

is representable by a k—scheme X, [V]. X,, is the m-th jet scheme of X, and F,, is
isomorphic to its functor of points. In particular the closed points of X,,, are in bijection
with the k[t]/(#™1) points of X.

For m,p € N,m > p, the truncation homomorphism A[t]/(#™*!) — A[t]/(t*?T!) induces a
canonical projection 7, , : X;;, — X,. These morphisms clearly verify m,, , 0 Tgm = 7qp
for p < m < ¢q, and they are affine mrophisms, so that they define a projective system
whose limit is a scheme that we denote X, and we call the arc space of X.

Note that Xo = X. We denote the canonical projection 7, o : X, — Xo by mp,, and by
U, the canonial morphisms X,,, — Xj.

3 Jet schemes of rational double point singularities

These are the locally complete intersection rational surface singularities. They are of five
types. Embedded in C* = Spec C[z, y, 2], they are defined by the following equations:

An, neN:zy— 22" =o0.

D,,neNn>4:2%2—z(y?+2"2)=0.

Ee:22+yd+at =0

Er:2® +y° +yz° =0.

Eg:22+y*+a° =0

We will study the jet schemes of these types of singularities each apart.

if Ris aring, I C R an ideal, we denote by V(I) the subvariety of Spec R defined
by I. Let X = SpecA, where A = %, for f an equation defining one of the above
singularities. Let m € N and let A,,, be the ring of sections of X,,. For g € A,,, we denote
by D™(g) C X, the open set defined by D™ (g) := Spec Ap,,.
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3.1 The A, singularities

The A,, singularities are the toric surface singularities which are locally complete intersec-
tion. Their jet schemes have been studied in [Mo3]. We find the following:

Theorem 3.1. Form € N,;n > 1, The scheme of m—th jets centered in the singular locus
of an A,, Singularity is a locally complete intersection scheme. For m < n this scheme has
m irreducible components each of codimension m + 2. For m > n+ 1, it has n irreducible
components each of codimension m + 2.

3.2 The singularities D,,n >4

We look to the singularities Do, (the study of the case of Ds,11 is analaguous). Let
flx,y,2) = 22 — 2y? — 22! € C[z,y, 2] and let X C C3 be the hypersurface defined by
f.- We write

m oom oom ) i=m A
f(z xit', Z yit', Z zit') = Z Fit' mod ™, (¢)
i=0 i=0 i=0 i=0

then the m-th jet scheme X, of X is defined in
C3m+D) — (C3),, = SpecClz;, i, 2,0 = 0,...,m)]

by the ideal I,, = (Fp, F1, ..., Fi). Since the restriction of m, to ﬂﬁ,fl)(X\O) is a trivial
fibration [I], we have that 7,,'(X\0) is an irreducible component of X,, of codimension
m+1in (C3),,, and we will prove below that the codimension of m,,1(0) in (C3),, is m+2.
This implies that X,, is irreducible for every m € N, since any irreducible component of
X, may have codimension at most m + 1, being definded by m + 1 equations. Note that
the irreducibility of X,,, follows already from [Mu], but in this simple case we give a direct
prove without an extra effort. From now on, all the codimensions of subvarieties of X,
are considered as codimensions in (C3),,.

We now study the irreducible components of X9, = m,.1(0). Let I2, be its defining ideal
in (C?),,. From the above expression of I,,, we have that \/ITJ = (x0, Y0, 20) and \/E =
(w0, Yo, 20, 21) and so XY and X3 are irreducible of codimensions 3 and 4 respectively.

We have that \/@ = (0, Y0, 20, 21, £1y1) what implies that Xg has 2 irreducible compo-
nents each of codimension 5.

We stratify X3 as follows:

X5 = (D*(x1) N X3) U (D*(y1) N X5) U (X5 NV (21,91))- (1)

We sutdy respectively the variteties 7, 's(D3(y1) N X3), 7,5 (D3 (1) N X§) and 7,15 (X9 N

V(fL‘l, yl))
For m > 4, the ring of sections of 7r;1713(D3(y1) N X3) is

Clzi, yi, 21,1 =0,...,m]y,
(any07ZO7217$17F4> s 7Fm)
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In this ring we have the congruences

Fn = _y%xn—Q + Gn(.’L’Q, oy In—3,Y1s -y Yn—3,225 - - - 7Zn—2)‘ (3)

where n < 2 < m and G, are polynomials in the mentionned variables. Moreover, since we
can divide by y?, these equations are linear in z,,_» and permit to get rid of the variables

it = 2,...,m — 2. We conclude that 77;0713(D3(y1) N XY) is irreducible of codimension
m + 2 (This linearity argument will be used repeatedly in this paper). We will show that
Y1

71';1713(D3 (y1) N XY) is an irreducible component of XY, for every m > 4, we call it ch
Let us consider H,, = (W;Z}4(D4(x1))ﬁV(:co, Y0, 20) )red Where m > 4. Let J,, be its defining
ideal in (C3),, N D™(x1). Seen in the open subscheme D*(z1) of (C3)4, we have that

Hy =V (x0,y0, 20, 21, Y1, 22),
and
Hs = V($0>y07207217y1a 22192)-

This is because
_ 2
F4 = 29 mod (3}07 Yo, 20, 21, yl)

and
9
Fs5 = z1y; mod (0,0, 20, 21, Y1, 22)-

For 2 < k < n — 1, we have that in the open subscheme D?*(z1) of (C3)qy

Hop = V (20, Y05 205 215 Y1, Y2, s Yk—1, 22, 235 -++» Zk)

and for 2 < k <n — 2,

H2k+1 - V($07?JO, 20,215, Y1, Y25 ooy Yy B2, 235 -ovy Zk)

in the open subscheme D(x1) N (C?3)gx 1. This is due to the fact that for such a k, we have
that
Fyy = z,% mod Jop_1

and
Fopyg = :cly,% mod Jo.

which means that for 4 < m < 2n — 1, H,, is irreducible of codimension m + 2. For
m = 2n — 1, we have that

Fn=ayn =27 = a1(ya—1 — 277 (a1 + 217 mod Janoa,
therefore Hs,_1 has 2 irreducible components, each of codimension 2n + 1. For m >
2n, by the same argument as in equations 2 and 3, we have that the ring of sections of
ﬂ%}gn_l(D%*l(xl) NV (zo, Yo, 20)) is isomorphic to a polynomial ring over

Clz1, Yn—1]z,
(Yn—1 = 27" (Y1 + 2771

(4)
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We then have that H,, has 2 irreducible components each of codimension m + 2. We call

their closures in X9 : C’,(anl)— and C’,(anl) 4 . We will show that C,(anl)— and C’,(nDzl)ﬂ—

are irreducible components of XY, for m > 2n.

By the stratification 1, it remains to look at 7T;l’13 (XY NV (z1,y1)). We have that

W;;(X?? N V(xlﬂyl)) = V(:EanOa 20721»3/17961,22)

which is not an irreducible component of Xff since it has codimension 3 in V' (xq, yo, 20, 21) N
(C3)4 while XY is only defined by 2 equations herein.
We have that

7T5_,§(X:g NV (z1,y1)) = V(x0, Y0, 20, 21, Y1, T1, 22)

which is irreducible of codimension 7, so it is an irreducible component of X?.

W&%(Xg NV (z1,91)) = V (0, Y0, 20, 21, Y1, T1, 22, 25 — T2Y3)

which is an irreducible component of Xg . Indeed, it is irreducible because z§ — T9y2 is an

irreducible polynomial; it is not included in Céle) or C’éDyl) because if it is the case, they
will be equal being irreducible and having the same dimension, but they are not equal
because 7r6_7§ (XY NV (z1,y1)) is included in V(z1,y1).

In order to determine the irreducible components of W;}G(V(.’E(),yO,ZO,Zl,yl,l'l,ZQ,Z% —
w2y3)), we define the following varieties. For k = 2,...,2n — 3, and m > 2k + 2 we set

qulrzyk = W;}2k+2(D2k+2(yk) N V($0) 1, Y0, Y1y - - -5 Yk—1, 205 215, Zk))

By the same argument as in equations 2 and 3, we have that CRY is irreducible of
codimension m + 2.
Forl=4,...,2n — 2, we claim that

-1 2 2
ng,ﬁ(v(xovy0720,217y1,361,Z2>23 —T213)) =
Dy 2 2
U Cgl kUV($O7x1)y07"')3/[—27207-"7Zl—l7zl _Ile—l) (5)
k=2,...1-2

and for [ =2n — 1,

-1 2 2
7T4n—2,6(v(x07 Y0, 20,21, Y1, L1, 22, 23 — 1’2y2)) =

D 2n—1
U C0x U V(T0, 1,90, - - - Y2n—3s 205 - - - » 22025 Zon_1 — T2Yan_o — 23" 1) (6)
k=2,...,2n—3
are the decompositions into irreducible components.
The proof of the claim is by induction on I. For | = 4, we stratify V(xq, yo, 20, 21, Y1, 21, 22, zg—
r2y3) as follows:

(V (20,0, 20, 21, Y1, 1, 22, 23 — T235) NV (y2)) U
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(V (0, Yo, 20, 21, Y1, T1, 22, 25 — T2y3) N D(y2)). (7)

Since we have that
.6 (V (20,50, 20, 21, Y1, 21, 22, 25 — T2y5) NV (y2)) =

2 2
V (20, Yo, 20, 21, Y1, L1, 22, 23, Y2, 2§ — T2Y3),

and 777;’16(V(:1:0,y0, 20, 21, Y1, L1, 22, 232) — z9y3) N DY(ys)) is CsDyQ, we obtain the decompo-
sition in the equality 5. This is the decomposition into irreducible components, because
both parts have the same dimensions and are irredubile, so an inclusion of one part in the
other would mean that they are equal, which is not true by their definitions.

If we suppose the claim is true for [, we deduce it for [ + 1 by stratifying

2 2
V(IE(% T1,Y0y -+ Yl—25,20y - - -y Rl—1yR] — :Z:le—l)

as in the stratification (7).
We define

An—2 . 2 2 2n—1
C 0= V(x(]:y()vz()azlayl?xla227“-72271—273/2)"'ay2n—3az2n—1 — T2Yop—2 — Iy )

whcih is irreducible of codimension 4n. For m > 4n — 2, set

€0 = 1y (O,

So we have defined the following irreducible subvarieties of X9 o:
Dy

Cults, Cglny, -~ fnyfgfg, Cin—2p, C’gij— and C’gfé%— each of codimension m + 2.
These irreducible varieties are the irreducible components of X , because by their
definitions, their union is equal to Xffnfz, they are not equal. On the other hand, one of
them cannot be contained in an other strictly because they have the same dimensions. We
also recover the irreducible components of X2, for every m < 4n — 2 and we find that the
codimension of each component is m—+2. These components are not irreducible components
of X, m < 4n — 2 as explained in the beginning of this section, because the codimension
of each is strictly bigger then m + 1. Thus we have 7,,' (X\0) = X,, and X, is irreducible
for m < 4n — 2.
For m > 4n — 2 we have by the construction of CLY', CL¥2 ... Chvn=s cmg, CPz1_ and
C{Z“%—, their union is equal to X?,. To prove that these are its irreducible components, we
will prove that for m > 4n—2, C"™o is irreducible of codimension m+2. Let d := 4n—2. For
m > d+1 we have that C™o := W%}d(V(xg, Y0y 20y 215 YLy T1y 22, ey 221—25 Y2y vy Y2n—3s Zopy_1—

Toy3, o — 23" 1)) is defined in (C3),, by the ideal
(70, Y05 20, 21, Y15 T15 225 -5 2202, Y25 -+, Y2n—35 Jm—d)

where Jp,_g4 is the ideal obtained from the ideal defining X,, 4 in Ci’n_d by changing
variables. Indeed if we set

m m m
f (Z ﬂ?iti, Z yiti, Z Ziti> =
1=2 i=n

1=2n—1
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m-2 m—(2n-2) m—(2n-1)
FLEQ w2t 20 D0yt 277N YD 2t | =
=0 i=0 i—0
m—2 m—((2n-2)) m—(2n—1)
td‘f Z xQ""itz’ Z y(2n72)+itla Z 2271_1_1_1‘152
=0 i=0 i=0

(the last equality follows from the fact that f is weighted homogenuous of degree d for the
weights 2,2n — 2 and 2n — 1 given respectively to z,y and z)

i=m—d
:td< Z Giti> mod ™1 (00)
i=0

then J,,,—g is generated by G;,i = 0,...,m — d, and by comparing (¢) with (¢¢), we get
that

Gi = F‘i(x27 ey L2445 Y2n—2y - - 5 Y2244, R2n—1, - - - 7z2n—1+2')-

We deduce that
codim (C™o0) =d+ 1+ codim (X,,—q).

This implies by a simple induction on m that
codim (C™o0) =m + 2.

Therefore codim (X9) = m + 2, so X,, is irreducible. It follows that C™o which is
isomorphic to a product of X,,_4 by an affine space is irreducible. On the other hand, the
ideal defining X? in C?, is generated by the m + 2 functions o, yo, 20, F},i = 2,...,m.
Hence it is a complete intersection (see proposition 3.7 in [BMS1] for a more elegant proof
of this fact). We deduce the following;:

Theorem 3.2. The scheme of m—th jets centered in the singular locus of a D,, Singularity
s a complete intersection scheme, and for m > 2n — 3, the number of irreducible compo-
nents of X0, is equal to the number of exceptional curves on the minimal resolution of the
singularity.

Remark 3.3. Pay attention. The shift in minoring m between the theorem and what comes
before, is due to the fact that we were studying Do, singularities, but the theorem is stated
for Dy,.

3.3 The singularity FEjg

Let f(z,y,2) = 22+ 9y +2* € C[r,y, 2] and let X C C3 be the variety defined by f. If we

write
=m

m m m
f(z it Z yit', Z zit') = Z Fit' mod t™,
=0 1=0 =0

% i i 1=0



3 JET SCHEMES OF RATIONAL DOUBLE POINT SINGULARITIES 8

then its m-th jet scheme X, is defined in C3(m+1) = (C®),,, by the ideal I,,, = (Fp, F1, ..., Fn).

As for D, singularities, since the restriction of m, to w4 1)(X \0) is a trivial fibration [I],

we have that 7' (X\0) is an irreducible component of X,,, of codimension m +1 in (C3),,,
and we will prove below that the codimension of 7,,,!(0) in (C3),, is m + 2. This implies
that X,, is irreducible for every m € N, since any irreducible component of X,,, may have
codimension at most m+ 1, being definded by m+1 equations. Note that the irreducibility
of X,,, follows already from [Mu], but in this simple case we give a direct proof whithout
an extra effort. From now on, all the codimensions of subvarieties of X,,, are considered as
codimensions in (C3),,.

We now study the irreducible components of X2, = 7,.1(0) defined by I?, in (C?),,. By the
above expression of I,,,, we have that \/ITO = (0, Y0, 20), \/Tg = (20,0, 20, 21) and /I3 =
(w0, Yo, 20, 21, ¥1) which means that X, X9 and X are irreducible. \/T = (\/@, 23 + 1)

so that X has 2 irreducible components, each of codimension 6.

We stratify Xé as follows:
X3 = (X§ N D*(22)) U(X] NV (22)) (8)

For m > 5, we claim that 71';%14(D4(zz)) has 2 irreducible components, each of codi-
mension m + 2 and that we will call CP*2— and CP*2 4 . The argument is the same as
in equations (2) and (3) in the case of D,, singularities. Indeed, in the ring of sections of

(D (22))

1
TF(I) =2zZ]_9 — H(Z),With H(l) € k[ZQ, ey R1=3y Ty L YD ,yl]ZQ, (9)
22
and the claim follows from the linearity of this equation in the z;,7 > 3. These components
will be irreducible components of X9, for every m > 5.
From the stratification (8), it remains to consider 7r;n,14(V(zQ)) = V(x0, Y0, 20, 21, Y1, 22, £1)N
X9 where m > 5. We have that

0
V($07y0> 20, 21, Y1, 22, .%'1) N X5 = V(l"O,Z/Oa 205 21, Y1, 22, xl)

is irreducible and of codimension 7 what means that it is an irreducible component of X 50
that we call Bs. X g has then 3 irreducible components each of codimension 7.(Note that
these irreducible varieties are the irreducible components because by their definitions they
are not equal, and one of them cannot be contained in an other strictly because of their
dimensions).

We have that

0 2 3
V(9507yo,207217y17227551) N X6 - V($0)y07207217y152251:1723 + y2)

which is irreducible of codimension 8, and X{ has 3 irreducible components each of codi-
mension 8. We stratify A := V (zo, yo, 20, 21, Y1, 22, T1, zg + y3) as follows

A= (AND%(z)) U (ANV(z3)).
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For m > 7, we have that 777;,16(/1 N D6(z3)) is irreducible of codimension m + 2. We call

this component C2% it will be an irreducible component of X2 for every m > 7.
Let us study

T (AN V (23)) = V (20, Y0, 20, 21, 1, 22, 71, 23, y2) N X,
where m > 7. We have that
V(JU()»ZUO; 20, 21,Y1,22,T1, 2’3,?/2) N X’? - V($0>?/07 20,21y Y1, 22,1, Z3vy2)7

so it is irreducible of codimension 9 and it gives rise to an irreducible component of X?
that we call B7. Then, XY has 4 irreducible components which are Chz=_ CDz= CDz
and V' (xo, o, 20, 21, Y1, 22, 1, 23, y2), each of codimension 9.
We have that B := V (x0, Y0, 20, 21, Y1, 22, T1, 23, y2) N X§ =

V(x07 Yo, 20, 215 Y1, 22, .%'1, 23,Y2, (24 -+ i.TQ)(Z4 - Z.%'Q))

has 2 irreducible components each of codimension 10, therefore Xg has 5 irreducible com-
ponents each of codimension 10.

We stratify B as follows

B=(BND8z))U(BNV(z)). (10)

We have that, for the same argument as in (9), 7r;L714(B N D*(23)) has 2 irreducible

components, each of codimension m + 2 and we will call them C2* — and CL# 4 . These
components will be irreducible components of X0, for every m > 9.
From the stratification 10, it remains to consider

WT;}S(B N V(Z4)) - V(an Yo, 20, 21, Y1, 22,1, 23,Y2, 24, 1"2) N Xv(q)q,a
where m > 9. We have that

0
V(ﬂfo, Yo, 20, 21, Y1, 22, L1, 23, Y2, 24,902) N Xg = V(ﬂﬁo,yo, 20521, Y1, 22, %1, 23, Y2, 24, T2, y3)

which is irreducible of codimension 12, and embedded in V(xo, yo, 20, 21, Y1, 22, €1, 23, Y2)
it is of codimension 3, which means that it cannott be an irreducible components of
V (o, Yo, 20, 21, Y1, 22, 1, 23, Y2) N X
which is defined in
V(x0, Y0, 20, 21, Y1, 22, T1, 23, Y2)

by the 2 equations
22+ x5 = 22425 + xSz + yg’ =0.

Therefore Xg has just 5 irreducible components only, each of codimension 11.
For the same reason and since

0
V(IEQ, Yo, 20, %15 Y1, 22, L1, 23, Y2, %4, xQ)leo = V(x07 Yo, 20,215 Y1, 22, L1, 23, Y2, 24, L2, Y3, 25)
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has codimension 13 it cannot be an irreducible component and we have that X?O has again
only 5 irreducible components, each of codimension 12.

0
V (20,90, 20, 21, Y1, 22, T1, 23, Y2, 24, 2)NX 11 = V (20, Y0, 20, 21, Y1, 22, T1, 23, Y2, 24, L2, Y3, 25)

is of codimension 13 which is equal to the codimensions of the other 5 components, so it
is a new component of X{| that has born, and that we will call Clo, so that X, has 6
irreducible components.

We have that

0
X12 N V(JI(), Yo, 20, 21, Y1, 22, L1, 23, Y2, 24, L2, Y3, 25) =
2 3 4
V($0>y07 20521, Y1, 22, L1, 23, Y2, 24, L2, Y3, 25, 26 +y; + ZES)

which is irreducible of codimension 14 and X?Q has 6 irreducible components each of
codimension 14. So we have shown that X, is irreducible for m < 12. On the other hand,
because f is weighted-homogeneous, we remark that the equations defining

V (20, Y0, 20, 21, Y1, 22, T1, 23, Y2, 24, T2, Y3, 25) N Xy

for m > 12 are the same defining X,,_12 but in other variables (see the case of D,
singularities for a proof), which proves that X, is irreducible for every m and therefore

m, . 0
C™"o:= XmﬁV(anyOaZO,21,3/1,227561,2’372/2,Z4>$2,y3725)-

is irreducible of codimension m +2 for every m > 11 and X9, has 6 irreducible components
for every m > 11.
We deduce the following theorem

Theorem 3.4. The scheme of m—th jets centered in the singular locus of an Fg Singularity
is a complete intersection scheme, and for m > 11, the number of irreducible components of
X0 is equal to the number of exceptional curves on the minimal resolution of the singularity.

We also obtain the following infinite projective systems of irreducible components,
induced by the restriction of the morphisms 7, p,—1 :

o= CP2 0P 0P XD, (11)
o= CP2y 0P 0P XD, (12)
o CDm 5 0P By — CPP 4, (13)
o= CPu 0P B — P, (14)
o CPay 0P — By — P, (15)
i CMo — ... — CMo — ORF £ (16)

We now will associate with an irreducible component of X9 a divisorial valuation over
C3. For m € N, let 9% : C3, — C3, be the canonical morphism, here the exponent a
stands for ambiant.
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For p € N, we consider the following cylinder in the arc space

Cont?(f) = {y € C3_;ord;f oy = p}.

Since 92, is a trivial fibration, for every irreducible component H,, C X2, we have that

a ~1(H,) N Cont™L(f)

m

is an irreducible component of Cont™1(f). Note that fact that for every irreducible com-
ponent H,,y1 C XP,LH, such that my,1,m(Hmy1) C Hy,, we have that codim(Hy,41) >
codim(H,y,), implies that 12 ~1(H,,) N Cont™1(f) # (). We associate to H,, a discrete
valuation vg,, as follows: let v be the generic point of ¢& ' (H,,) N Cont™*(f), then for
every h € Clz,y, 2], we set

vi,, (h) = ordih o .

It follows from corollary 2.6 in [ELM], that vp,, is a divisorial valuation (see also [dFEI],
[Re3], prop. 3.7 (vii) applied to % ~1(H,,)).

Given m > 1, with an irreducible component H,, of X we associate the following

m?
vector:

v(Hp) = (va,, (%), va,, (9), vi,, (2) € N°.

We define the following set of divisorial valuations on C3 :
EFE :={vy,;Hy, C X0 m > 1 is an irreducible component and
v(Hp,) # v(Hp-1) for H,_; acomponent verifying , m—1(Hp) C Hp—1}  (17)

Theorem 3.5. The elements of EE are the divisorial valuations which appear on the
minimal embedded resolutions of singularities of Eg.

proof :  From a direct analysis of the irreducible components in the projective systems
(11),...,(16), we conclude that

EE = {X), X9, X2, Bs, B;,C'o}.

Moreover, the elements of EE are irreducible components which are defined in C3, by
hyperplane coordinates. This implies that for every H € EE, vy is a monomial valuation,
which is defined by the vector v(H;) = a = (a1,a2,a3), i.e. if h = Y, s azy?2" €
Clz,y, 2] then

VHi(h) = mil’lieNS;bﬁﬁo a1ty + asts + asis.

We have these vectors: v(X?) = (1,1,1), v(X9) = (1,1,2), v(X9) = (1,2,2), v(Bs) =
(2,2,3), v(B7) = (2,3,4), v(Cto) = (3,4,6).

On the other hand, it follows from [GL](page 8,9,10) that there are five minimal em-
bedded resolutions of singularities of Eg. These resolutions are minimal in the sense that
if we contract one of the minimal divisors, we loose the smoothness of the srtict transform
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or of the ambiant space , or the normal crossings. We also have from |GL], page 9, that
the divisorial valuations which are defined by the exceptional divisors appearing on these
resolutions of singularities, are monomial valuations, and they are defined exactly by the
vectors v(H), H € EE (modulo a permutation which is due to the fact that the authors of
[GL] write the equation of Eg as follows 22 + y® + 2% = 0). This terminates the proof. [

Remark 3.6. In this simple case, the definition of EFE is affected by the fact that Eg
is a singularity which is non-degenerate with respect to its Newton Polygon. In general,
this definition needs careful study of the divisorial valuations defined by the irreducible
components of the jet schemes [LMR],[T]. Theorem 3.5 should be thought as an embedded
Nash correspondence [ELM][,[LMR].

We get a graph by representing each irreducible component of X% m > 1, by a vertex
Vims 1 <4 < N(m)(N(m) is the number of irreducible components of X0,) and by joining
the vertices v, ;41 and viq m if Tp41,m induces one of the maps appearing in the projective
systems (11),...,(12) between the corresponding irreducible components.We represent this
graph in figure 1. The surrounded vertices are the vertices which represent elements of
EE. We remark that for m bigger than 11, the number of vertices counted horizontally is
6.

| Reiras

- ~ )z
C-{] =g O

Pz cPt

cP=2 Py
Iz

o= =+

Figure 1
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4 The singularities F; and Ejy

The same arguments that we have used to study the jet schemes of the singularities A,,, D,
and Fg work also for the jet schemes of the singularities F7 and Eg and we found:

Theorem 4.1. The scheme of m—th jets centered in the singular locus of the Singularities
E; (resp. Eg) is a complete intersection scheme, and for m > 17 (resp. 29) the number of
irreducible components of X0, is equal to the number of exceptional curves on the minimal
resolution of the singularity.

4.1 Questions

In this section, we ask some questions related to jet schemes of rational singularities.

Let X = Spec W be an affine k—scheme, where k is a field. We assume that
the point O defined by the ideal (x1,...,2,) belongs to X. The rings of globlal sections
of I'(X,,) and I'(X) are graded rings (see [BMS1| or [BMS2] for details). The ring of
sections B := I'(XY,) of the fiber above the point «O» of ¥,,, : X, — X is also graded,

and we can associate to it the Arc Hilbert-Poincaré series:

AHPxo(t) = > rgp(Bm)t"
meN

where By, is the homogenuous component of B of degree m and rki(B,,) is its rank over
k as a k—vector space.

Remark 4.2. Note that for m > 1, the ring of sections B :=T'(X2) of X0 is also graded.
We denote by P)((mo)(t) its poincaré series. By the definition of the grading, we have that

for every m >1, AHPx o(t) = P)(gg(t) mod t™.

We will use the following theorem to compute the Arc-Hilbert Poincaré series for ra-
tional double point singularities.

Theorem 4.3. [S] Let R be a k graded algebra. Let 01,...,0, be a regular sequence of
nonzero homogeneous elements of R of positive degree, say deg 0; = d;. Let I be the ideal
generated by the 0; and S the quotient of R by I endowed with the natural “quotient grading”.
then

T

P(S,t) =Y rgp(Sm)t™ = P(R,t) [J(1 - t%).

meN i=1

By theorems 3.1,3.2,3.4 an 4.1 we have that the jet schemes centered at a rational
double point singularity are complete intersection. We can then apply theorem 4.3 and
then remark 4.2 to obtain:

Proposition 4.4. If X is a surface with a rational double point singularity at O, then:

1 1

AHPX,O(t) = (1 _ t)3 (1 — t2)2(1 - tm>2
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We can find a more general statement than proposition 4.4 in [BMS1].

Question 4.5. Does the Arc Hilbert-Poincaré series characterize rational double point
singularities ¢

Let X be a singular locally complete intersection variety over C—algebraic variety and
let sing(X) be its singular locus. We denote by X, := w1 (sing(X)).
Question 4.6. o If X has at most rational singularities, is the number of irreducible
components of X, independent of m, for m big enough ?
o Suppose that the number of irreducible components of X3 independent of m, for
m big enough, does X have at most rational singularities ?

We think that the answer to the questions in 4.6 is yes.

Question 4.7. If the answer to the first question in 4.6 is yes, is the number of irreducible
components of Xpi'?, for m big enough, equal to the number of irreducible components of
the space of arcs centered in the singular locus of X.
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