
Jet schemes of rational double point singularities

Hussein MOURTADA

September 30, 2012

Abstract

We prove that for m ∈ N, m big enough, the number of irreducble components
of the schemes of m−jets centered at a point which is a double point singularity is
independent of m and is equal to the number of exceptional curves on the minimal
resolution of the singularity. We also relate some irreducible components of the jet
schemes of an E6 singularity to its "minimal" embedded resolutions of singularities.

1 Introduction

In this note, we are interested in schemes of jets centered at a rational double point
singularity. While we have that the global jet schemes of surfaces having such a singularity
is irreducible [Mu], we prove that form ∈ N, m big enough, the number N(m) of irreducble
components of the schemes of m−jets centered at the singular point is independent of m.
Note that this is not the case for instance for plane curves [Mo1]. This may not be the case
also when we have rational singularities which are not locally complete intersection [Mo2].
Moreover, we find that N(m) is equal to the number of exceptional curves on the minimal
resolution of the singularity. This reminds of the Nash map, which defines a correspondence
between the irreducible components of the space of arcs centered at the singularity and
the exceptional curves on the minimal resolution of the singularity. But in general, there is
no direct relation between the irreducbile components of jet schemes and those of the arc
space. For instance, the function N(m), number of irreducible components of the schemes
of m−jets centered in the singular point of a plane curve, goes to infinity when m goes to
infinity [Mo1], while the space of arcs centered at the singular point is irreducible. Note
that the Nash map is bijective for rational double point singularities [P1],[PS],[Pe],[Le],
for surfaces with rational singularities [Re1],[Re2] and in general for surface singularities
[deBPe].
We will also give a special treatment to the jet schemes of the E6 singularity, by defining
a bijective correspndence between some irreducible components of some jet schemes and
the divisors appearing on the embedded resolutions of singularities which are minimal in
the sense of [GL]. This can be thought as an embedded Nash correspondence.

The structure of the paper is as follows: the second section contains preliminaries on
jet schemes. In the third section, we give and prove the main results. In the last section,
we ask some questions about the Arc-Hilbert-Poincaré series [BMS1],[BMS2] for rational
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double point singularities, and about jet schemes of locally complete intersection rational
singularities.

I would like to thank the organizers of the second conference on valuation theory, for
inviting me to give a course in this conference. I would like also to thank Helena Cobo,
Monique Lejeune-Jalabert and Bernard Teissier for several discussions. I am grateful to
Camille plénat for sending me the manuscript [P2] which made me interested in rational
double point singularities and for several discussions about this paper.

2 Preliminaries on jet schemes

Let k be an algebraically closed field of arbitrary characteristic. Let X be a k-algebraic
variety and let m ∈ N. The functor Fm : k−Schemes −→ Sets which to an affine scheme
defined by a k−algebra A associates

Fm(Spec(A)) = Homk(SpecA[t]/(tm+1), X)

is representable by a k−scheme Xm [V]. Xm is the m-th jet scheme of X, and Fm is
isomorphic to its functor of points. In particular the closed points of Xm are in bijection
with the k[t]/(tm+1) points of X.
For m, p ∈ N,m > p, the truncation homomorphism A[t]/(tm+1) −→ A[t]/(tp+1) induces a
canonical projection πm,p : Xm −→ Xp. These morphisms clearly verify πm,p ◦ πq,m = πq,p
for p < m < q, and they are affine mrophisms, so that they define a projective system
whose limit is a scheme that we denote X∞ and we call the arc space of X.
Note that X0 = X. We denote the canonical projection πm,0 : Xm −→ X0 by πm, and by
Ψm the canonial morphisms Xm −→ X0.

3 Jet schemes of rational double point singularities

These are the locally complete intersection rational surface singularities. They are of five
types. Embedded in C3 = Spec C[x, y, z], they are defined by the following equations:

An, n ∈ N : xy − zn+1 = 0.

Dn, n ∈ N, n ≥ 4 : z2 − x(y2 + xn−2) = 0.

E6 : z2 + y3 + x4 = 0.

E7 : x2 + y3 + yz3 = 0.

E8 : z2 + y3 + x5 = 0.

We will study the jet schemes of these types of singularities each apart.
if R is a ring, I ⊆ R an ideal, we denote by V (I) the subvariety of Spec R defined
by I. Let X = SpecA, where A = C[x,y,z]

f , for f an equation defining one of the above
singularities. Let m ∈ N and let Am be the ring of sections of Xm. For g ∈ Am, we denote
by Dm(g) ⊂ Xm the open set defined by Dm(g) := Spec Amg.
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3.1 The An singularities

The An singularities are the toric surface singularities which are locally complete intersec-
tion. Their jet schemes have been studied in [Mo3]. We find the following:

Theorem 3.1. For m ∈ N, n ≥ 1, The scheme of m−th jets centered in the singular locus
of an An Singularity is a locally complete intersection scheme. For m ≤ n this scheme has
m irreducible components each of codimension m+ 2. For m ≥ n+ 1, it has n irreducible
components each of codimension m+ 2.

3.2 The singularities Dn, n ≥ 4

We look to the singularities D2n, (the study of the case of D2n+1 is analaguous). Let
f(x, y, z) = z2 − xy2 − x2n−1 ∈ C[x, y, z] and let X ⊂ C3 be the hypersurface defined by
f. We write

f(
m∑
i=0

xit
i,

m∑
i=0

yit
i,

m∑
i=0

zit
i) =

i=m∑
i=0

Fit
i mod tm+1, (�)

then the m-th jet scheme Xm of X is defined in

C3(m+1) = (C3)m = SpecC[xi, yi, zi, i = 0, . . . ,m]

by the ideal Im = (F0, F1, ..., Fm). Since the restriction of πm to π(−1)m (X\0) is a trivial
fibration [I], we have that π−1m (X\0) is an irreducible component of Xm of codimension
m+1 in (C3)m, and we will prove below that the codimension of π−1m (0) in (C3)m is m+2.
This implies that Xm is irreducible for every m ∈ N, since any irreducible component of
Xm may have codimension at most m+ 1, being definded by m+ 1 equations. Note that
the irreducibility of Xm, follows already from [Mu], but in this simple case we give a direct
prove without an extra effort. From now on, all the codimensions of subvarieties of Xm

are considered as codimensions in (C3)m.
We now study the irreducible components of X0

m = π−1m (0). Let I0m be its defining ideal
in (C3)m. From the above expression of Im, we have that

√
I01 = (x0, y0, z0) and

√
I02 =

(x0, y0, z0, z1) and so X0
1 and X0

2 are irreducible of codimensions 3 and 4 respectively.
We have that

√
I03 = (x0, y0, z0, z1, x1y1) what implies that X0

3 has 2 irreducible compo-
nents each of codimension 5.
We stratify X0

3 as follows:

X0
3 = (D3(x1) ∩X0

3 ) ∪ (D3(y1) ∩X0
3 ) ∪ (X0

3 ∩ V (x1, y1)). (1)

We sutdy respectively the variteties π−1m,3(D
3(y1) ∩X0

3 ), π−1m,3(D
3(x1) ∩X0

3 ) and π−1m,3(X
0
3 ∩

V (x1, y1)).
For m ≥ 4, the ring of sections of π−1m,3(D

3(y1) ∩X0
3 ) is

C[xi, yi, zi, i = 0, . . . ,m]y1
(x0, y0, z0, z1, x1, F4, . . . , Fm)

. (2)
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In this ring we have the congruences

Fn ≡ −y21xn−2 +Gn(x2, . . . , xn−3, y1, . . . , yn−3, z2, . . . , zn−2). (3)

where n ≤ 2 ≤ m and Gn are polynomials in the mentionned variables. Moreover, since we
can divide by y21, these equations are linear in xn−2 and permit to get rid of the variables
xi, i = 2, . . . ,m − 2. We conclude that π−1m,3(D

3(y1) ∩X0
3 ) is irreducible of codimension

m+ 2 (This linearity argument will be used repeatedly in this paper). We will show that
π−1m,3(D

3(y1) ∩X0
3 ) is an irreducible component of X0

m for every m ≥ 4, we call it CDy1
m .

Let us considerHm = (π−1m,4(D
4(x1))∩V (x0, y0, z0))red wherem ≥ 4. Let Jm be its defining

ideal in (C3)m ∩Dm(x1). Seen in the open subscheme D4(x1) of (C3)4, we have that

H4 = V (x0, y0, z0, z1, y1, z2),

and
H5 = V (x0, y0, z0, z1, y1, z2, y2).

This is because
F4 ≡ z22 mod (x0, y0, z0, z1, y1)

and
F5 ≡ x1y22 mod (x0, y0, z0, z1, y1, z2).

For 2 ≤ k ≤ n− 1, we have that in the open subscheme D2k(x1) of (C3)2k

H2k = V (x0, y0, z0, z1, y1, y2, ..., yk−1, z2, z3, ..., zk)

and for 2 ≤ k ≤ n− 2,

H2k+1 = V (x0, y0, z0, z1, y1, y2, ..., yk, z2, z3, ..., zk)

in the open subscheme D(x1)∩ (C3)2k+1. This is due to the fact that for such a k, we have
that

F2k ≡ z2k mod J2k−1

and
F2k+1 ≡ x1y2k mod J2k.

which means that for 4 ≤ m < 2n − 1, Hm is irreducible of codimension m + 2. For
m = 2n− 1, we have that

Fm ≡ x1y2n−1 − x2n−11 = x1(yn−1 − xn−11 )(yn−1 + xn−11 ) mod J2n−2,

therefore H2n−1 has 2 irreducible components, each of codimension 2n + 1. For m ≥
2n, by the same argument as in equations 2 and 3, we have that the ring of sections of
π−1m,2n−1(D

2n−1(x1) ∩ V (x0, y0, z0)) is isomorphic to a polynomial ring over

C[x1, yn−1]x1

(yn−1 − xn−11 )(yn−1 + xn−11 )
. (4)
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We then have that Hm has 2 irreducible components each of codimension m+ 2. We call
their closures in X0

m : C
(Dx1)
m − and C(Dx1)

m + . We will show that C(Dx1)
m − and C(Dx1)

m +
are irreducible components of X0

m, for m ≥ 2n.

By the stratification 1, it remains to look at π−1m,3(X
0
3 ∩ V (x1, y1)). We have that

π−14,3(X0
3 ∩ V (x1, y1)) = V (x0, y0, z0, z1, y1, x1, z2)

which is not an irreducible component of X0
4 since it has codimension 3 in V (x0, y0, z0, z1)∩

(C3)4 while X0
4 is only defined by 2 equations herein.

We have that
π−15,3(X0

3 ∩ V (x1, y1)) = V (x0, y0, z0, z1, y1, x1, z2)

which is irreducible of codimension 7, so it is an irreducible component of X0
5 .

π−16,3(X0
3 ∩ V (x1, y1)) = V (x0, y0, z0, z1, y1, x1, z2, z

2
3 − x2y22)

which is an irreducible component of X0
6 . Indeed, it is irreducible because z23 − x2y22 is an

irreducible polynomial; it is not included in C(Dx1)
6 or C(Dy1)

6 because if it is the case, they
will be equal being irreducible and having the same dimension, but they are not equal
because π−16,3(X0

3 ∩ V (x1, y1)) is included in V (x1, y1).

In order to determine the irreducible components of π−1m,6(V (x0, y0, z0, z1, y1, x1, z2, z
2
3 −

x2y
2
2)), we define the following varieties. For k = 2, . . . , 2n− 3, and m > 2k + 2 we set

CDyk
m := π−1m,2k+2(D

2k+2(yk) ∩ V (x0, x1, y0, y1, . . . , yk−1, z0, z1, , ...zk)).

By the same argument as in equations 2 and 3, we have that CDyk
m is irreducible of

codimension m+ 2.
For l = 4, . . . , 2n− 2, we claim that

π−12l,6(V (x0, y0, z0, z1, y1, x1, z2, z
2
3 − x2y22)) =⋃

k=2,...,l−2
CDyk
2l

⋃
V (x0, x1, y0, . . . , yl−2, z0, . . . , zl−1, z

2
l − x2y2l−1) (5)

and for l = 2n− 1,

π−14n−2,6(V (x0, y0, z0, z1, y1, x1, z2, z
2
3 − x2y22)) =⋃

k=2,...,2n−3
CDyk
4n−2

⋃
V (x0, x1, y0, . . . , y2n−3, z0, . . . , z2n−2, z

2
2n−1 − x2y22n−2 − x2n−12 ) (6)

are the decompositions into irreducible components.
The proof of the claim is by induction on l. For l = 4, we stratify V (x0, y0, z0, z1, y1, x1, z2, z

2
3−

x2y
2
2) as follows:

(V (x0, y0, z0, z1, y1, x1, z2, z
2
3 − x2y22) ∩ V (y2))

⋃
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(V (x0, y0, z0, z1, y1, x1, z2, z
2
3 − x2y22) ∩D(y2)). (7)

Since we have that

π−18,6(V (x0, y0, z0, z1, y1, x1, z2, z
2
3 − x2y22) ∩ V (y2)) =

V (x0, y0, z0, z1, y1, x1, z2, z3, y2, z
2
4 − x2y23),

and π−1m,6(V (x0, y0, z0, z1, y1, x1, z2, z23 − x2y22) ∩D6(y2)) is CDy2
8 , we obtain the decompo-

sition in the equality 5. This is the decomposition into irreducible components, because
both parts have the same dimensions and are irredubile, so an inclusion of one part in the
other would mean that they are equal, which is not true by their definitions.
If we suppose the claim is true for l, we deduce it for l + 1 by stratifying

V (x0, x1, y0, . . . , yl−2, z0, . . . , zl−1, z
2
l − x2y2l−1)

as in the stratification (7).
We define

C4n−2o := V (x0, y0, z0, z1, y1, x1, z2, ..., z2n−2, y2, ..., y2n−3, z
2
2n−1 − x2y22n−2 − x2n−12 )

whcih is irreducible of codimension 4n. For m > 4n− 2, set

Cmo = π−1m,4n−2(C
4n−2o).

So we have defined the following irreducible subvarieties of X0
4n−2:

CDy1
4n−2, C

Dy2
4n−2, ..., C

Dy2n−3

4n−2 , C4n−2o, CDx1
4n−2− and CDx1

4n−2+ each of codimension m+ 2.
These irreducible varieties are the irreducible components of X0

4n−2 because by their
definitions, their union is equal to X0

4n−2, they are not equal. On the other hand, one of
them cannot be contained in an other strictly because they have the same dimensions. We
also recover the irreducible components of X0

m for every m ≤ 4n− 2 and we find that the
codimension of each component ism+2. These components are not irreducible components
of Xm,m ≤ 4n− 2 as explained in the beginning of this section, because the codimension
of each is strictly bigger then m+ 1. Thus we have π−1m (X\0) = Xm and Xm is irreducible
for m ≤ 4n− 2.
For m > 4n− 2 we have by the construction of CDy1

m , CDy2
m , ..., C

Dy2n−3
m , Cmo, CDx1

m − and
CDx1
m +, their union is equal to X0

m. To prove that these are its irreducible components, we
will prove that form > 4n−2, Cmo is irreducible of codimensionm+2. Let d := 4n−2. For
m ≥ d+1 we have that Cmo := π−1m,d(V (x0, y0, z0, z1, y1, x1, z2, ..., z2n−2, y2, ..., y2n−3, z

2
2n−1−

x2y
2
2n−2 − x

2n−1
2 )) is defined in (C3)m by the ideal

(x0, y0, z0, z1, y1, x1, z2, ..., z2n−2, y2, ..., y2n−3, Jm−d)

where Jm−d is the ideal obtained from the ideal defining Xm−d in C3
m−d by changing

variables. Indeed if we set

f

(
m∑
i=2

xit
i,

m∑
i=n

yit
i,

m∑
i=2n−1

zit
i

)
=
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f

t2(m−2∑
i=0

x2+it
i), t2n−2(

m−(2n−2)∑
i=0

y2n−2+it
i), t2n−1(

m−(2n−1)∑
i=0

z2n−1+it
i)

 =

tdf

m−2∑
i=0

x2+it
i,

m−((2n−2))∑
i=0

y(2n−2)+it
i,

m−(2n−1)∑
i=0

z2n−1+it
i


(the last equality follows from the fact that f is weighted homogenuous of degree d for the
weights 2, 2n− 2 and 2n− 1 given respectively to x, y and z)

= td

(
i=m−d∑
i=0

Git
i

)
mod tm+1, (��)

then Jm−d is generated by Gi, i = 0, . . . ,m − d, and by comparing (�) with (��), we get
that

Gi = Fi(x2, . . . , x2+i, y2n−2, . . . , y2n−2+i, z2n−1, . . . , z2n−1+i).

We deduce that
codim (Cmo) = d+ 1 + codim (Xm−d).

This implies by a simple induction on m that

codim (Cmo) = m+ 2.

Therefore codim (X0
m) = m + 2, so Xm is irreducible. It follows that Cmo which is

isomorphic to a product of Xm−d by an affine space is irreducible. On the other hand, the
ideal defining X0

m in C3
m is generated by the m + 2 functions x0, y0, z0, Fi, i = 2, . . . ,m.

Hence it is a complete intersection (see proposition 3.7 in [BMS1] for a more elegant proof
of this fact). We deduce the following:

Theorem 3.2. The scheme of m−th jets centered in the singular locus of a Dn Singularity
is a complete intersection scheme, and for m ≥ 2n − 3, the number of irreducible compo-
nents of X0

m is equal to the number of exceptional curves on the minimal resolution of the
singularity.

Remark 3.3. Pay attention. The shift in minoring m between the theorem and what comes
before, is due to the fact that we were studying D2n singularities, but the theorem is stated
for Dn.

3.3 The singularity E6

Let f(x, y, z) = z2 + y3 + x4 ∈ C[x, y, z] and let X ⊂ C3 be the variety defined by f . If we
write

f(
m∑
i=0

xit
i,

m∑
i=0

yit
i,

m∑
i=0

zit
i) =

i=m∑
i=0

Fit
i mod tm+1,
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then itsm-th jet schemeXm is defined in C3(m+1) = (C3)m by the ideal Im = (F0, F1, ..., Fm).

As for Dn singularities, since the restriction of πm to π(−1)m (X\0) is a trivial fibration [I],
we have that π−1m (X\0) is an irreducible component of Xm of codimension m+1 in (C3)m,
and we will prove below that the codimension of π−1m (0) in (C3)m is m + 2. This implies
that Xm is irreducible for every m ∈ N, since any irreducible component of Xm may have
codimension at most m+1, being definded by m+1 equations. Note that the irreducibility
of Xm, follows already from [Mu], but in this simple case we give a direct proof whithout
an extra effort. From now on, all the codimensions of subvarieties of Xm are considered as
codimensions in (C3)m.
We now study the irreducible components of X0

m = π−1m (0) defined by I0m in (C3)m. By the
above expression of Im, we have that

√
I01 = (x0, y0, z0),

√
I02 = (x0, y0, z0, z1) and

√
I03 =

(x0, y0, z0, z1, y1) which means that X0
1 , X

0
2 and X0

3 are irreducible.
√
I04 = (

√
I03 , z

2
2 + x41)

so that X0
4 has 2 irreducible components, each of codimension 6.

We stratify X4
0 as follows:

X0
4 = (X0

4 ∩D4(z2)) ∪ (X0
4 ∩ V (z2)) (8)

For m ≥ 5, we claim that π−1m,4(D
4(z2)) has 2 irreducible components, each of codi-

mension m + 2 and that we will call CDz2
m − and CDz2

m + . The argument is the same as
in equations (2) and (3) in the case of Dn singularities. Indeed, in the ring of sections of
π−1m,4(D

4(z2))

1

2z2
F (l) = zl−2 −H(l),with H(l) ∈ k[z2, . . . , zl−3, x1, . . . , xl, y2, . . . , yl]z2 , (9)

and the claim follows from the linearity of this equation in the zi, i ≥ 3. These components
will be irreducible components of X0

m for every m ≥ 5.
From the stratification (8), it remains to consider π−1m,4(V (z2)) = V (x0, y0, z0, z1, y1, z2, x1)∩
X0

m where m ≥ 5. We have that

V (x0, y0, z0, z1, y1, z2, x1) ∩X0
5 = V (x0, y0, z0, z1, y1, z2, x1)

is irreducible and of codimension 7 what means that it is an irreducible component of X0
5

that we call B5. X
0
5 has then 3 irreducible components each of codimension 7.(Note that

these irreducible varieties are the irreducible components because by their definitions they
are not equal, and one of them cannot be contained in an other strictly because of their
dimensions).
We have that

V (x0, y0, z0, z1, y1, z2, x1) ∩X0
6 = V (x0, y0, z0, z1, y1, z2, x1, z

2
3 + y32)

which is irreducible of codimension 8, and X0
6 has 3 irreducible components each of codi-

mension 8. We stratify A := V (x0, y0, z0, z1, y1, z2, x1, z
2
3 + y32) as follows

A = (A ∩D6(z3)) ∪ (A ∩ V (z3)).
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For m ≥ 7, we have that π−1m,6(A ∩D6(z3)) is irreducible of codimension m + 2. We call
this component CDz3

m , it will be an irreducible component of X0
m for every m ≥ 7.

Let us study

π−1m,6(A ∩ V (z3)) = V (x0, y0, z0, z1, y1, z2, x1, z3, y2) ∩X0
m

where m ≥ 7. We have that

V (x0, y0, z0, z1, y1, z2, x1, z3, y2) ∩X0
7 = V (x0, y0, z0, z1, y1, z2, x1, z3, y2),

so it is irreducible of codimension 9 and it gives rise to an irreducible component of X0
7

that we call B7. Then, X0
7 has 4 irreducible components which are CDz2

m −, CDz2
m +, CDz3

m

and V (x0, y0, z0, z1, y1, z2, x1, z3, y2), each of codimension 9.
We have that B := V (x0, y0, z0, z1, y1, z2, x1, z3, y2) ∩X0

8 =

V (x0, y0, z0, z1, y1, z2, x1, z3, y2, (z4 + ix2)(z4 − ix2))

has 2 irreducible components each of codimension 10, therefore X0
8 has 5 irreducible com-

ponents each of codimension 10.

We stratify B as follows

B = (B ∩D8(z4)) ∪ (B ∩ V (z4)). (10)

We have that, for the same argument as in (9), π−1m,4(B ∩D4(z2)) has 2 irreducible
components, each of codimension m+ 2 and we will call them CDz4

m − and CDz4
m + . These

components will be irreducible components of X0
m for every m ≥ 9.

From the stratification 10, it remains to consider

π−1m,8(B ∩ V (z4)) = V (x0, y0, z0, z1, y1, z2, x1, z3, y2, z4, x2) ∩X0
m,

where m ≥ 9. We have that

V (x0, y0, z0, z1, y1, z2, x1, z3, y2, z4, x2) ∩X0
9 = V (x0, y0, z0, z1, y1, z2, x1, z3, y2, z4, x2, y3)

which is irreducible of codimension 12, and embedded in V (x0, y0, z0, z1, y1, z2, x1, z3, y2)
it is of codimension 3, which means that it cannott be an irreducible components of

V (x0, y0, z0, z1, y1, z2, x1, z3, y2) ∩X0
9

which is defined in
V (x0, y0, z0, z1, y1, z2, x1, z3, y2)

by the 2 equations
z24 + x42 = 2z4z5 + 4x32x3 + y33 = 0.

Therefore X0
9 has just 5 irreducible components only, each of codimension 11.

For the same reason and since

V (x0, y0, z0, z1, y1, z2, x1, z3, y2, z4, x2)∩X0
10 = V (x0, y0, z0, z1, y1, z2, x1, z3, y2, z4, x2, y3, z5)
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has codimension 13 it cannot be an irreducible component and we have that X0
10 has again

only 5 irreducible components, each of codimension 12.

V (x0, y0, z0, z1, y1, z2, x1, z3, y2, z4, x2)∩X0
11 = V (x0, y0, z0, z1, y1, z2, x1, z3, y2, z4, x2, y3, z5)

is of codimension 13 which is equal to the codimensions of the other 5 components, so it
is a new component of X0

11 that has born, and that we will call C11o, so that X0
11 has 6

irreducible components.
We have that

X0
12 ∩ V (x0, y0, z0, z1, y1, z2, x1, z3, y2, z4, x2, y3, z5) =

V (x0, y0, z0, z1, y1, z2, x1, z3, y2, z4, x2, y3, z5, z
2
6 + y34 + x43)

which is irreducible of codimension 14 and X0
12 has 6 irreducible components each of

codimension 14. So we have shown that Xm is irreducible for m ≤ 12. On the other hand,
because f is weighted-homogeneous, we remark that the equations defining

V (x0, y0, z0, z1, y1, z2, x1, z3, y2, z4, x2, y3, z5) ∩Xm

for m ≥ 12 are the same defining Xm−12 but in other variables (see the case of Dn

singularities for a proof), which proves that Xm is irreducible for every m and therefore

Cmo := X0
m ∩ V (x0, y0, z0, z1, y1, z2, x1, z3, y2, z4, x2, y3, z5).

is irreducible of codimension m+2 for every m ≥ 11 and X0
m has 6 irreducible components

for every m ≥ 11.
We deduce the following theorem

Theorem 3.4. The scheme of m−th jets centered in the singular locus of an E6 Singularity
is a complete intersection scheme, and for m ≥ 11, the number of irreducible components of
X0

m is equal to the number of exceptional curves on the minimal resolution of the singularity.

We also obtain the following infinite projective systems of irreducible components,
induced by the restriction of the morphisms πm,m−1 :

. . . −→ CDz2
m − −→ . . . −→ CDz2

5 − −→ CDz2
4 − −→ X0

3 , (11)

. . . −→ CDz2
m + −→ . . . −→ CDz2

5 + −→ CDz2
4 + −→ X0

3 , (12)

. . . −→ CDz3
m −→ . . . −→ CDz3

6 −→ B5 −→ CDz2
4 ±, (13)

. . . −→ CDz4
m − −→ . . . −→ CDz4

8 − −→ B7 −→ CDz3
6 , (14)

. . . −→ CDz4
m + −→ . . . −→ CDz4

8 + −→ B7 −→ CDz3
6 , (15)

. . . −→ Cmo −→ . . . −→ C11o −→ CDz4
10 ± . (16)

We now will associate with an irreducible component of X0
m a divisorial valuation over

C3. For m ∈ N, let ψa
m : C3

∞ −→ C3
m be the canonical morphism, here the exponent a

stands for ambiant.
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For p ∈ N, we consider the following cylinder in the arc space

Contp(f) = {γ ∈ C3
∞; ordtf ◦ γ = p}.

Since ψa
m is a trivial fibration, for every irreducible component Hm ⊂ X0

m, we have that

ψa
m
−1(Hm) ∩ Contm+1(f)

is an irreducible component of Contm+1(f). Note that fact that for every irreducible com-
ponent Hm+1 ⊂ X0

m+1, such that πm+1,m(Hm+1) ⊂ Hm, we have that codim(Hm+1) >
codim(Hm), implies that ψa

m
−1(Hm) ∩ Contm+1(f) 6= ∅. We associate to Hm a discrete

valuation νHm as follows: let γ be the generic point of ψa
m
−1(Hm)∩ Contm+1(f), then for

every h ∈ C[x, y, z], we set
νHm(h) = ordth ◦ γ.

It follows from corollary 2.6 in [ELM], that νHm is a divisorial valuation (see also [dFEI],
[Re3], prop. 3.7 (vii) applied to ψa

m
−1(Hm)).

Given m ≥ 1, with an irreducible component Hm of X0
m, we associate the following

vector:
v(Hm) = (νHm(x), νHm(y), νHm(z)) ∈ N3.

We define the following set of divisorial valuations on C3 :

EE := {νHm ;Hm ⊂ X0
m,m ≥ 1 is an irreducible component and

v(Hm) 6= v(Hm−1) for Hm−1 a component verifying πm,m−1(Hm) ⊂ Hm−1} (17)

Theorem 3.5. The elements of EE are the divisorial valuations which appear on the
minimal embedded resolutions of singularities of E6.

proof : From a direct analysis of the irreducible components in the projective systems
(11),. . . ,(16), we conclude that

EE = {X0
1 , X

0
2 , X

0
3 , B5, B7, C

11o}.

Moreover, the elements of EE are irreducible components which are defined in C3
m by

hyperplane coordinates. This implies that for every H ∈ EE, νH is a monomial valuation,
which is defined by the vector v(Hi) = a = (a1, a2, a3), i.e. if h =

∑
i∈N3 aix

i1yi2zi3 ∈
C[x, y, z] then

νHi(h) = mini∈N3;bi 6=0 a1i1 + a2i2 + a3i3.

We have these vectors: v(X0
1 ) = (1, 1, 1), v(X0

2 ) = (1, 1, 2), v(X0
3 ) = (1, 2, 2), v(B5) =

(2, 2, 3), v(B7) = (2, 3, 4), v(C11o) = (3, 4, 6).

On the other hand, it follows from [GL](page 8,9,10) that there are five minimal em-
bedded resolutions of singularities of E6. These resolutions are minimal in the sense that
if we contract one of the minimal divisors, we loose the smoothness of the srtict transform
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or of the ambiant space , or the normal crossings. We also have from [GL], page 9, that
the divisorial valuations which are defined by the exceptional divisors appearing on these
resolutions of singularities, are monomial valuations, and they are defined exactly by the
vectors v(H), H ∈ EE (modulo a permutation which is due to the fact that the authors of
[GL] write the equation of E6 as follows x2 + y3 + z4 = 0). This terminates the proof.

Remark 3.6. In this simple case, the definition of EE is affected by the fact that E6

is a singularity which is non-degenerate with respect to its Newton Polygon. In general,
this definition needs careful study of the divisorial valuations defined by the irreducible
components of the jet schemes [LMR],[T]. Theorem 3.5 should be thought as an embedded
Nash correspondence [ELM],[LMR].

We get a graph by representing each irreducible component of X0
m,m ≥ 1, by a vertex

vi,m, 1 ≤ i ≤ N(m)(N(m) is the number of irreducible components of X0
m) and by joining

the vertices vi1,m+1 and vi0,m if πm+1,m induces one of the maps appearing in the projective
systems (11),...,(12) between the corresponding irreducible components.We represent this
graph in figure 1. The surrounded vertices are the vertices which represent elements of
EE. We remark that for m bigger than 11, the number of vertices counted horizontally is
6.

Figure 1
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4 The singularities E7 and E8

The same arguments that we have used to study the jet schemes of the singularities An, Dn

and E6 work also for the jet schemes of the singularities E7 and E8 and we found:

Theorem 4.1. The scheme of m−th jets centered in the singular locus of the Singularities
E7 (resp. E8) is a complete intersection scheme, and for m ≥ 17(resp. 29) the number of
irreducible components of X0

m is equal to the number of exceptional curves on the minimal
resolution of the singularity.

4.1 Questions

In this section, we ask some questions related to jet schemes of rational singularities.

Let X = Spec k[x0,...,xn]
(f1,...,fr)

be an affine k−scheme, where k is a field. We assume that
the point O defined by the ideal (x1, ..., xn) belongs to X. The rings of globlal sections
of Γ(Xm) and Γ(X∞) are graded rings (see [BMS1] or [BMS2] for details). The ring of
sections B := Γ(X0

∞) of the fiber above the point «O» of Ψm : X∞ −→ X is also graded,
and we can associate to it the Arc Hilbert-Poincaré series:

AHPX,O(t) =
∑
m∈N

rgk(Bm)tm

where Bm is the homogenuous component of B of degree m and rkk(Bm) is its rank over
k as a k−vector space.

Remark 4.2. Note that for m ≥ 1, the ring of sections B := Γ(X0
m) of X0

m is also graded.
We denote by P (m)

X,O(t) its poincaré series. By the definition of the grading, we have that

for every m ≥ 1, AHPX,O(t) = P
(m)
X,O(t) mod tm.

We will use the following theorem to compute the Arc-Hilbert Poincaré series for ra-
tional double point singularities.

Theorem 4.3. [S] Let R be a k graded algebra. Let θ1, ..., θr be a regular sequence of
nonzero homogeneous elements of R of positive degree, say deg θi = di. Let I be the ideal
generated by the θi and S the quotient of R by I endowed with the natural ”quotient grading”.
then

P (S, t) =
∑
m∈N

rgk(Sm)tm = P (R, t)

r∏
i=1

(1− tdi).

By theorems 3.1,3.2,3.4 an 4.1 we have that the jet schemes centered at a rational
double point singularity are complete intersection. We can then apply theorem 4.3 and
then remark 4.2 to obtain:

Proposition 4.4. If X is a surface with a rational double point singularity at O, then:

AHPX,0(t) =
1

(1− t)3
1

(1− t2)2...(1− tm)2...
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We can find a more general statement than proposition 4.4 in [BMS1].

Question 4.5. Does the Arc Hilbert-Poincaré series characterize rational double point
singularities ?

Let X be a singular locally complete intersection variety over C−algebraic variety and
let sing(X) be its singular locus. We denote by Xsing

m := π−1m (sing(X)).

Question 4.6. • If X has at most rational singularities, is the number of irreducible
components of Xsing

m independent of m, for m big enough ?

• Suppose that the number of irreducible components of Xsing
m is independent of m, for

m big enough, does X have at most rational singularities ?

We think that the answer to the questions in 4.6 is yes.

Question 4.7. If the answer to the first question in 4.6 is yes, is the number of irreducible
components of Xsing

m , for m big enough, equal to the number of irreducible components of
the space of arcs centered in the singular locus of X.
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